Федеральное государственное бюджетное учреждение науки Институт динамики геосфер Российской академии наук (ИДГ РАН)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«МОНИТОРИНГ ГЕОФИЗИЧЕСКИХ ПОЛЕЙ»

Направление подготовки 05.06.01 Науки о земле

Профиль (направленность программы) 25.00.29 Физика атмосферы и гидросферы

Квалификация выпускника Исследователь. Преподаватель-исследователь

Форма обучения Очная

Вид промежуточного контроля: зачет

ИСПОЛЬЗУЕМЫЕ СОКРАЩЕНИЯ

ВО – высшее образование;

УК – универсальные компетенции;

ОПК – общепрофессиональные компетенции;

ПК – профессиональные компетенции;

ФГОС ВО – федеральный государственный образовательный стандарт высшего образования

ООП – основная образовательная программа

ЛЗ – лекционное занятие

С – семинары

К – контроль (промежуточная аттестация)

СР – самостоятельная работа обучающихся

О – опрос (собеседование)

ФОС – фонд оценочных средств

СОДЕРЖАНИЕ

1.	Цели и задачи освоения дисциплины	4
2.	Место дисциплины в структуре основной	
	образовательной программы	4
3.	Требования к результатам освоения дисциплины	5
4.	Структура и содержание дисциплины	8
5.	Текущие и промежуточные аттестации	11
6.	Образовательные технологии	14
7.	Учебно-методическое обеспечение самостоятельной работы	
	аспиранта	14
8.	Учебно-методическое и информационное обеспечение	10
9.	Материально-техническое обеспечение дисциплины	16

1. Цели и задачи освоения дисциплины

Цель освоения дисциплины - формирование базовых знаний по физическим полям Земли, отдельных разделов организации и проведения регистрации геофизических полей специализированными средствами измерений для понимания основного перечня задач научных исследований и работ в области инструментальных наблюдений за геофизическими полями на границе земная кора-атмосфера. Овладение современными методами геофизического эксперимента и приемами его планирования. Приобретение знаний и формирование навыков научных исследований и способности применять полученные знания на практике.

Для достижения поставленной цели в процессе изучения дисциплины решаются следующие задачи:

- изучение характеристик и свойств физических полей Земли;
- изучение основных источников геофизических полей;
- изучение подходов и методов инструментальных наблюдений за геофизическими полями Земли;
- изучение временных и пространственных вариаций геофизических полей на поверхности земной коры;
- изучение современных представлений о взаимодействии и преобразовании геофизических полей;
- освоение современных теоретических представлений и эмпирических моделей генерации геофизических полей в различных условиях;
- изучение организации мониторинга геофизических полей на примере Центра геофизического мониторинга г. Москвы ИДГ РАН.

2. Место дисциплины (модуля) в структуре основной образовательной программы

Дисциплина преподается аспирантам второго года обучения. Курс основан на ранее полученных аспирантами знаниях по общей физике, приповерхностной геофизики и геомеханики.

Содержание программы разработано с учетом требований ФГОС ВО по направлению подготовки 05.06.01 Науки о земле, утвержденного приказом Мини-

стерства образования и науки Российской Федерации от 30 июля 2014 г. № 870, зарегистрировано в Минюсте Российской Федерации 20 августа 2014 г. № 33680.

Курс входит в вариативную часть Блока 1 «Дисциплины (модули)» основной образовательной программы по профилю подготовки 25.00.29 Физика атмосферы и гидросферы направления подготовки 05.06.01 НАУКИ О ЗЕМЛЕ.

Программа предусматривает усвоение аспирантами дополнительных знаний, отражающих последние достижения экспериментальной и теоретической геофизики, а также знаний по организации инструментальных наблюдений.

Трудоёмкость освоения дисциплины составляет 3 зачетных единицы (з.е.) или 108 академических часов, в том числе 50 часов аудиторных занятий и 58 часов самостоятельной работы.

Содержание программы «Мониторинг геофизических полей» разработано с учетом требований ФГОС ВО по направлению подготовки 05.06.01 Науки о земле, утвержденного приказом Министерства образования и науки Российской Федерации от 30 июля 2014 г. № 870, зарегистрировано в Минюсте России 20 августа 2014 г. № 33680.

Дисциплина предназначена для подготовки аспирантов и имеет практикоориентированный характер.

Для изучения дисциплины аспиранту необходимо иметь знания в объеме программ подготовки специалиста в области математики, физики, геофизики, сейсмологии.

3. Требования к результатам освоения дисциплины:

Процесс изучения учебной дисциплины "Мониторинг геофизических полей" направлен на формирование следующих компетенций:

а) универсальных (УК):

- способность к критическому анализу и оценке современных научных достижений, генерированию новых идей при решении исследовательских и практических задач, в том числе в междисциплинарных областях (УК-1);

б) общепрофессиональных (ОПК):

- способность самостоятельно осуществлять научно-исследовательскую деятельность в области геофизики с использованием современных методов исследования и информационно-коммуникационных технологий (ОПК-1);

в) профессиональных (ПК):

- способность использовать фундаментальные и прикладные разделы геофизики (в том числе полевую геофизику) и специализированные геологические и геофизические знания (в том числе о физических процессах, протекающих в Земле, и в атмосфере) для решения проблем геофизики (ПК-1).
- способность свободно и творчески пользоваться современными методами анализа, обработки и интерпретации комплексной геофизической информации для решения научных и практических задач, в том числе находящихся в смежных областях знаний (ПК-3).

В результате освоения дисциплины аспирант должен:

1. Знать:

- фундаментальные законы геофизики, основные свойства и характеристики физических полей Земли, основные законы, относящиеся к описанию физических полей и условия их выполнения;
- порядки численных величин, характеризующих физические поля Земли;
- современные проблемы полевой геофизики;

2. Уметь:

- систематизировать и обобщать как уже имеющуюся в литературе, так и самостоятельно полученную в ходе исследований информацию;
- пользоваться полученными знаниями для определения основных параметров, характеризующих движение газа и жидкости в проницаемых массивах горных пород;
- уметь правильно сопоставлять результаты теоретических расчетов с результатами инструментальных наблюдений;
- производить численные оценки по порядку величины;

- видеть в задачах полевой геофизики физическое содержание;
- осваивать новые области приповерхностной геофизики и анализировать натурные данные;
- оценивать достоверность и точность получаемых результатов;

3. Владеть:

- навыками освоения большого объема информации;
- навыками самостоятельной работы;
- культурой постановки и моделирования задач, связанных с установлением закономерностей преобразования геофизических полей;
- навыками грамотной обработки натурных данных и сопоставления их с теоретическими результатами;
- практикой исследования и решения теоретических и прикладных задач полевой геофизики.

4. Структура и содержание дисциплины

Общая трудоемкость дисциплины "Мониторинг геофизических полей" составляет 3 зачетных единицы, 108 часов, из которых аудиторная нагрузка составляет 50 часов (лекции - 24 часа, семинары - 24 часа, контроль – 2 часа), самостоятельная работа аспирантов – 58 часов.

4.1. Структура дисциплины

Таблица1

Вид учебной работы	Трудоемкость (ак.час)
Аудиторные занятия,	50
в том числе:	
Лекционные занятия (ЛЗ)	24
Семинары (С)	24
Контроль (промежуточная аттестация) (К)	2
Самостоятельная работа (СР)	58
Всего:	108

4.2. Содержание разделов дисциплины

Таблица 2

), c		Трудоемкость (ак.час)				
№ п/п	Раздел дисциплины	всего	Очная форма обучения			
		всего	Л3	C	СР	
1	Основные характеристики и свойства физических полей Земли	18	4	6	8	
2	Источники геофизических по- лей	16	4	4	8	
3	Подходы и методы инструментальных наблюдений за геофизическими полями	20	4	4	12	
4	Характерные временные и про- странственные вариации геофи- зических полей на границе зем- ная кора-атмосфера	20	4	4	12	
5	Взаимодействие и преобразование геофизических полей	20	4	6	10	
6	Организация мониторинга геофизических полей в Центре геофизического мониторинга г. Москвы ИДГ РАН, основные результаты	12	4		8	
	Контроль (промежуточная аттестация)	2				
Ито	DF0:	108	24	24	58	

4.3. Тематика аудиторных занятий

Тематика лекционных занятий

Таблица 3

№ раз- дела	№ лекции	Основное содержание	Кол-во (ак. час)	Литература	Форма текущей аттеста-
					ции
1	1	Магнитное, электрическое поля Земли. Акустические колебания и акустико-гравитационные волны. Основные характеристики	4	O1, O3, O4, O5; Д2, Д3	О

2	2	Источники глобального магнитного и электрического полей Земли. роль локальных факторов. источники техногенного типа	4	О2, О6, О7; Д1, Д4	О
3	3	Наземные и спутниковые системы наблюдений за геофизическими полями	4	O5, O6; Д1	О
4	4	Временные вариации геофизических полей. Периодичности. Роль приливных сил в формировнии периодичностей. неоднородности распределения полей в пространстве. Роль разломных зон	4	О1, О2, О6; Д1, Д2	O
5	5	Преобразование энергии между геофизическими полями разной природы	4	O1, O2, O6, O8; Д2	О
6	6	Состав регистрирующих средств в Центре геофизического мониторинга Москвы. Характеристика данных регистрации.	24	O1, O2	О
ИТОГО			24		

^{*} Примечание: О – опрос (собеседование). Формы контроля не являются жесткими и могут быть заменены преподавателем на другую форму контроля. Кроме того на семинарских занятиях может проводиться работа с нормативными документами, периодическими изданиями специальной российской и зарубежной литературы, материалами конференций и пр., что также оценивается преподавателем.

Тематика семинарских занятий

Таблица 4

№ раз- дела	№ занятия	Наименование	Кол-во (ак.час)	Литература
1, 2	1	Единицы измерения физических по- лей, их характерные амплитуды, рас- пространенность по Земле	6	O1, O2, 91-94,
3	2	Расчет токовой струи, возмущающей геомагнитное поле	4	O1, Д1, Д4
4	3	Сравнительная характеристика геофизических полей в разломных зонах и на серединных участках структурных блоков	4	O1 Д2

5	4	Оценка плотности энергии электрического, магнитного полей и сейсмических колебаний. Возможности преобразования энергии между полями.	4	О3,О5,О6; Д1, Д3
6	5	Определение параметров геофизиче- ских полей на основе инструменталь- ных наблюдений	6	01, 06, 07
Итого:			24	

5. Текущая и промежуточная аттестация

Текущая и промежуточная аттестация аспирантов является обязательной и проводится в соответствии с локальным актом ИДГ РАН - Положением о текущей, промежуточной и государственной итоговой аттестации аспирантов ИДГ РАН по программам высшего образования — программам подготовки научно-педагогических кадров в аспирантуре и фондом оценочных средств (ФОС).

Текущая аттестация по дисциплине проводится в форме опроса (собеседования) в рамках участия обучающихся в дискуссиях и различных контрольных мероприятиях по оцениванию фактических результатов обучения, осуществляемых преподавателем, ведущим дисциплину.

Объектами оценивания выступают:

- учебная дисциплина активность на занятиях, своевременность выполнения различных видов заданий, посещаемость занятий;
- степень усвоения теоретических знаний и уровень овладения практическими умениями и навыками по всем видам учебной работы, проводимым в рамках семинаров, практических занятий и самостоятельной работы.

Промежуточная аттестация по дисциплине осуществляется в виде зачета в период зачетно-экзаменационной сессии в соответствии с Графиком учебного процесса по приказу директора. Обучающийся допускается к зачету в случае выполнения аспирантом всех учебных заданий и мероприятий, предусмотренных настоящей программой. В случае наличия учебной задолженности (пропущенных занятий и (или) невыполненных заданий) аспирант отрабатывает пропущенные занятия и выполняет задания.

Оценивание з н а н и й обучающегося на промежуточной аттестации осуществляется с использованием нормативных оценок на зачете – зачтено (не зачтено).

Оценивание аспиранта на промежуточной аттестации в форме зачета Таблица 5

Оценка за-	Требования к знаниям и критерии выставления оценок
чета	
	Аспирант при ответе демонстрирует знание содержания тем учебной дисциплины.
Зачтено	Владеет основными понятиями и современными представлениями, имеет понятие о нерешенных проблемах, владеет подходами к решению задач в области полевой физики Земли, имеет представление о специфике проведения полевых и камеральных работ. Способен выполнять анализ проблем и намечать пути их решения.
не зачтено	Аспирант при ответе демонстрирует плохое знание содержания тем учебной дисциплины. Не владеет основными понятиями и современными представлениями, не владеет подходами к решению задач в области физики Земли, механики скальных пород, сейсмологии, имеет слабое представление о специфике проведения полевых и камеральных работ

6. Образовательные технологии

Обучение по дисциплине ведется с применением традиционных технологий по видам работ (лекционные занятия, научно-практические занятия, семинарские занятия, текущий контроль) по расписанию с использованием электронных учебных, методических и контролирующих пособий.

При изложении лекционного материала используются мультимедийные иллюстративные материалы, на практических занятиях проводится демонстрация работы регистраторов геофизических полей, а также применяются инновационные способы преподавания: метод активных лекций (лекция-гипотеза, лекцияконсультация, лекция-дискуссия).

Самостоятельная работа по дисциплине включает самоподготовку к учебным занятиям по учебной литературе и с помощью электронных ресурсов. Индивидуальная работа аспирантов проходит в библиотеке ИДГ РАН, МФТИ, ИФЗ РАН и других библиотеках.

7. Учебно-методическое и информационное обеспечение дисциплины

7.1. Основная литература:

Таблица 6

				таолица о
№ π/π	Автор	Наименование	Издательство	Год изда- ния*
O1	Адушкин В.В.,	Физические поля в припо-	М.: Наука	2014
	Спивак А.А.	верхностной геофизике		
O2	Спивак А.А.	Приповерхностная геофизика	М.: ИДГ РАН- МФТИ	2010
О3	Зильберман Г.Е.	Электричество и магнетизм	Долгопрудный: ИНТЕЛЛЕКТ	2008
O4	Кашлева Л.В.	Атмосферное электричество	СПб: изд. РГГМУ	2008
O5	Викулин А.В.	Физика Земли и геодинами-	Петропавловск-	2008
		ка	Камчатский: Изд-	
			во КамГУ им. Ви-	
			туса Беринга	
O6	Шулейкин В.Н.	Атмосферное электричество	М.: ИПНГ	2006
		и физика Земли		
O7	Гохберг М.Б.,	Сейсмоэлектромагнитные	М.: Наука	1988
	Моргунов В.А.,	явления		
	Похотелов О.А.			
O8	Шереметьева	Модели геомагнитных ва-	Петропавловск-	2013
	O.B.	риаций, обусловленные	Камчатский: Изд-	
		процессами в геосферных	во КамГУ им. Ви-	
		оболочках	туса Беринга	

7.2. Дополнительная литература:

Таблица 7

				таолица /
№ п/п	Автор	Наименование	Издательство	Год из- дания
Д1	Kelley M.C., Holzworth R.H.	The Earth's electric field: sources from Sun to Mud	Elsever Sciences Ltd	2013
Д2	Грунская Л.В.	Электромагнетизм приземного слоя и его взаимосвязь с геофизическими и астрофизическими процессами	Владимир: Владим. гос. ун-т	2002
ДЗ	Колесник А.Г., Колесник С.А., Побаченко С.В.	Электромагнитная экология	Томск: ТМЛ-пресс	2009
Д4		Глобальная электрическая цепь. Материалы Первой Всероссийской конференции. Борок, 7 – 11 октября 2013 г.	Ярославль: Фили- грань	2013
Д5	Любушин А.А.	Анализ данных систем геофизического и экологического мониторинга	М.: Наука,	2007

7.3. Электронные (образовательные, информационные, справочные, нормативные и т.п.) ресурсы:

Профессиональные базы данных:

- Э1. Электронная база данных ИДГ РАН "Результаты регистрации геофизических полей на ГФО "Михнево" http://idg.chph.ras.ru/~ mikhnevo/data/
- Э2. Электронная база данных ИДГ РАН "Результаты регистрации геофизических полей в Центре геофизического мониторинга г.Москвы http://idg-com.chph.ras.ru/~idg/data/
- Э3. База данных Геологической службы США U.S. Geological Survey (USGS) http://usgs.gov/source
- Э4. Журнал открытого доступа «Физика Земли" http://ifz.journal.ru *Общие ресурсы:*
- научная библиотека <u>eLIBRARY.RU</u>, более 20 полнотекстовых версий журналов по тематике курса;
- хранилище электронных копий всех издаваемых компанией Springer журналов http://www.springerlink.com/;
- электронная библиотека МФТИ http://lib.mipt.ru/
- федеральный портал «Российское образование» http://www.edu.ru
- библиотека по естественным наукам Российской академии наук http://benran.ru

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

- Кабинет (рабочее место аспиранта) с компьютером и периферийными устройствами для выполнения исследовательских лабораторных и расчетноисследовательских работ, а также прохождения компьютерных тестов.
- Студенческая аудитория.
- Кабинеты профильных лабораторий
- Конференц-зал Института, оснащенный мультимедийным оборудованием
- Мультимедийное оборудование. Компьютеры ИДГ РАН.
- Лицензированное программное обеспечение: Лицензированное программное обеспечение: MS Office 2007, Mathematica Site Kit, Acrobat Professional 9.0, ABBYY FineReader 11, ABBYY Lingvo x3.

Разработчики:

А.А.Спивак, профессор, доктор физ.-мат. наук заведующий лабораторией «Приповерхностная геофизика» ИДГ РАН

«<u>16</u>» <u>09</u> <u>2014 г. Ниц швах Н.А.</u> Подпись Ф.И.О.

Рецензенты:

Г.Г. Кочарян, профессор, доктор физико-математических наук, заведующий лабораторией «Деформационных процессов в земной коре» ИДГ РАН

«17» 09 2014 г. Кочароч Р.Л. Подпись Ф.И.О.

Программа курса «Мониторинг геофизических полей» рассмотрена и утверждена Ученым советом ИДГ РАН (Протокол № 3а/14 от 18.09.2014 г.).